In vivo bone engineering in a rabbit femur.
نویسندگان
چکیده
The repair of bone defects in reconstructive surgery has significant limitations. Donor site morbidity, limited supply of autograft, and risks and complications associated with allografting and synthetic bone substitutes are among the most significant. In an effort to address these problems, the search for an ideal bone replacement has led to the development of a new method of poly(lactide-co-glycolide) (PLGA) foam processing, enabling the production of a biodegradable scaffold with similar porosity to human trabecular bone. In this study, these scaffolds were evaluated for bone repair in vivo in a femoral critical-sized segmental defect in New Zealand White (NZW) rabbits. Three groups of nine animals were investigated. In the first group, the critical-sized defects were empty. Scaffolds alone were implanted in the second group, whereas autologous bone marrow cell-loaded scaffolds were implanted in the third group. Animals ambulated freely for 8 weeks after surgery, and bone formation throughout the defects was serially assessed radiographically and quantified using a bone formation index (BFI) measure. Postmortem radiography and histology were also undertaken to examine bone formation. There was a significant effect of applying this technology to the amount of bone formed in the defects as determined by the BFI (F = 3.41, P < 0.05). The mean BFI for the cell-loaded scaffolds was greater than for the control group at all measured time points (2-, 4-, 6-, and 8-week radiographs). This difference was significant for the 2- and 8-week radiographs (P < 0.05). Qualitative histological assessment confirmed these findings. We concluded from these findings that these PLGA scaffolds loaded with marrow-derived progenitor cells yield significant bone formation in a critical-sized rabbit femoral defect. This technology comprising a novel scaffold design and autologous cells may provide an alternative to current strategies for reconstruction of bony defects.
منابع مشابه
Bone Tissue Response to Plasma Sprayed Hydroxyapatite Coatings: An In Vivo Study on Rabbit Femoral Condyles
In this study, hydroxyapatite was coated on titanium substrates by plasma spraying process. A well-known porous and lamellar microstructure was found in the lateral a...
متن کاملIn-Vivo Study of Bioceramics in Order to Make Bone Prosthes
Purpose: There are a lot of experiences about using bone-like materials in order to replace bone defects, especially those which are caused by cancer therapy. The most suitable materials for this purpose are bioceramics. The investigations have been shown that bioceramics are able to induce proliferation of osteoblast as well as bone matrix synthesis in - vivo.The aim of the present study is to...
متن کاملاثر امواج فراصوتی کم توان بر رشد استخوان در داخل کانال ایمپلانت تیتانیومی
The effect of ultrasound waves with low intensity on reducing the time of repair and healing of bone fracture has been known. The present research was undertaken to investigate the effect of ultrasound waves on acceleration of bone growth and, finally, on repair and healing of surgical area using in-vivo animal experiment. In this study, 20 titanium implants with proper dimensions wer...
متن کاملMRI evaluation of rabbit bone marrow after acute irradiation
Background: Magnetic Resonance Imaging (MRI) is a safe modality and useful in characterizing normal and abnormal bone marrow (BM). MRI also presents a more global view of BM than biopsy therefore, it may provide a better understanding of hematologic disorders. The purpose of this study was to monitor radiation-induced alterations of BM in acute phase of irradiation (1-10 day after total body ir...
متن کاملاثرات تجویز هورمون رشد بر دانسیته استخوانی در خرگوش بالغ سالم
Background: The effects of growth hormone (GH) on bone density in healthy adults is controversial. This study was performed to evaluate the effects of GH administration on bone density under controlled conditions in healthy adult rabbits. Methods: Twenty healthy adult New Zealand white rabbits of both sexes were included in the study. The rabbits were divided into two groups. The experiment gr...
متن کاملAn investigation of the effects of osteoporosis, impact intensity and orientation on human femur injuries: a parametric finite element study
Objective: Femur is the strongest, longest and heaviest bone in the human body. Due to the great importance of femur in human body, its injury may cause large numbers of disabilities and mortality. Considering various effective parameters such as mechanical properties, geometry, loading configuration, etc. can propel the study to the trustable results.. Methods: A 3D finite element model of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of craniofacial surgery
دوره 14 3 شماره
صفحات -
تاریخ انتشار 2003